metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yong-Qin Wei, Zhang-Feng Zhou, Bo-Tao Zhuang, Ke-Chen Wu,* Cai-Ping Liu and Ming-Xi Zhang

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: wkc@ms.fjirsm.ac.cn

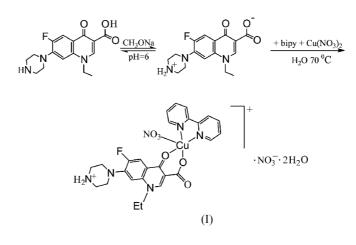
Key indicators

Single-crystal X-ray study T = 130 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.034 wR factor = 0.080 Data-to-parameter ratio = 11.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The mixed-ligand copper(II) complex (2,2'-bipyridine)-[1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(piperazin-4ium-1-yl)quinoline-3-carboxylato]nitratocopper(II) nitrate dihydrate

Received 9 November 2004

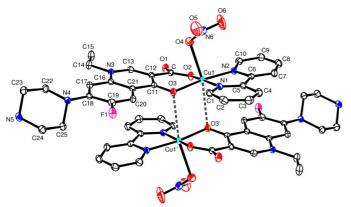

Accepted 1 December 2004

Online 11 December 2004

The drug norfloxacin and ligand 2,2'-bipyridine coordinate to copper(II) yielding a mixed-ligand complex, $[Cu(C_{16}H_{18}F-N_3O_3)(NO_3)(C_{10}H_8N_2)](NO_3)\cdot 2H_2O$ or $[Cu(H-Norf)(NO_3)-(bpy)](NO_3)\cdot 2H_2O$. The Cu^{II} atom has a five-coordinate environment with square-based pyramidal geometry, which involves two N atoms from the 2,2'-bipyridine ligand, two O atoms from the norfloxacinate ligand and one nitrate O atom. Weak interactions between O and Cu result in a centrosymmetric dimer.

Comment

Norfloxacin [H-Norf, 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1piperazinyl)quinoline-3-carboxylic acid)], serving as a fluoroquinolone antimicrobial agent, is widely used as an antibacterial drug. Treatment with this drug leads to doublestranded DNA breaks and cell death (Froelich-Ammon & Osheroff, 1995; Shea & Hiasa, 2000), which is thought to take place through the formation of intermediate copper or iron complexes (Mendoza-Diaz *et al.*, 1993). However, reports of the crystal structures of norfloxacin directly chelated to metal ions are rare (Chen *et al.*, 2001, 2000). As an extension of our research on the coordination behavior of norfloxacin with metal ions, we have synthesized a new mixed-ligand complex, $[Cu(bpy)(H-Norf)(NO_3)](NO_3)\cdot 2H_2O$. We report here the preparation and crystal structure of the title complex, (I).



In the mixed-ligand complex, copper(II) is five-coordinate, with two N atoms from bpy, two O atoms from H-Norf and one O atom from the NO_3^- ion (Table 1), leading to a squarebased pyramid. H-Norf chelates to copper(II) by using O2 and O3 to form a hexagonal ring structure, which is similar to that of the mixed-ligand complex of copper(I), $[Cu(PPh_3)_2(H-Norf)](ClO_4)$ (Chen *et al.*, 2001). Atoms Cu, O2, O3, N1 and

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

 $w = \frac{1}{[\sigma^2(F_o^2) + (0.0385P)^2 + 2.0954P]}$ where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 0.44 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{\text{min}} = -0.29 \text{ e } \text{\AA}^{-3}$

Figure 1

ORTEP-3 (Farrugia, 1997) drawing of the dimer cation of the title complex, with displacement ellipsoids at the 50% probability level. H atoms have been omitted for clarity. Primed atoms are related to their umpromed equivalents by inversion symmetry.

N2 constitute a nearly square plane, whereas atom O4 from the NO₃⁻ ion is located at the apex of the pyramid and is weakly bonded to the Cu atom. The title complex with squarebased pyramidal geometry is similar to the copper(II) complex $[Cu_2(cfc)_2(bpy)_2(pip)]\cdot 6H_2O$ reported by Wang *et al.* (2003). An important feature of the crystal structure is the weak attraction between Cu and O from H-Norf $[O3' \cdots Cu =$ 2.8723 (15) Å], which results in the formation of a dimer (Fig. 1). The occurrence of a centrosymmetric dimer connected by such a long $O \cdots Cu$ distance is rather rare (Zang *et al.*, 1990). The H atoms of the water molecules and of the amine group build up an intricate hydrogen-bond network with O and N atoms (Table 2)

Experimental

Norfloxacin (0.5 mmol) was dissolved in H_2O (25 ml) and the pH value of this solution was adjusted to 6 with CH₃ONa. 2,2'-Bipyridine(0.5 mmol) was added and the solution was heated to 343 K. Cu(NO₃)₂·3H₂O(0.5 mmol) was then added and the solution was stirred for 1 h. Crystals were obtained by cooling the solution, after a few days.

Crystal data

[Cu(C ₁₆ H ₁₈ FN ₃ O ₃)(NO ₃)-	$D_x = 1.668 \text{ Mg m}^{-3}$
$(C_{10}H_8N_2)](NO_3)\cdot 2H_2O$	Mo $K\alpha$ radiation
$M_r = 699.12$	Cell parameters from 6954
Monoclinic, $P2_1/n$	reflections
a = 13.9080 (8) Å	$\theta = 1.5 - 25.0^{\circ}$
b = 13.8441 (8) Å	$\mu = 0.87 \text{ mm}^{-1}$
c = 14.4835 (9) Å	T = 130 K
$\beta = 93.173 \ (3)^{\circ}$	Prism, blue
V = 2784.4 (3) Å ³	$0.32 \times 0.20 \times 0.15 \text{ mm}$
Z = 4	
Data collection	
Rigaku Mercury CCD	4902 independent reflections
diffractometer	4561 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.027$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(Blessing, 1995)	$h = -16 \rightarrow 15$
$T_{\min} = 0.770, T_{\max} = 0.852$	$k = -16 \rightarrow 16$
17 478 measured reflections	$l = -16 \rightarrow 17$

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.034$
$vR(F^2) = 0.081$
S = 1.09
4902 reflections
428 parameters
H atoms treated by a mixture of
independent and constrained
refinement

Table 1 Selected geometric parameters (Å, °).

1.9217 (15)	Cu-N1	1.9983 (18)
1.9289 (14)	Cu-O4	2.3760 (16)
1.9967 (17)		
93.45 (6)	N2-Cu-N1	81.16 (7)
92.17 (7)	O2-Cu-O4	89.69 (6)
171.98 (7)	O3-Cu-O4	89.45 (6)
170.82 (6)	N2-Cu-O4	96.31 (6)
92.60 (6)	N1-Cu-O4	97.27 (6)
	1.9289 (14) 1.9967 (17) 93.45 (6) 92.17 (7) 171.98 (7) 170.82 (6)	$\begin{array}{ccc} 1.9289 \left(14 \right) & Cu-O4 \\ 1.9967 \left(17 \right) & & \\ 93.45 \left(6 \right) & N2-Cu-N1 \\ 92.17 \left(7 \right) & O2-Cu-O4 \\ 171.98 \left(7 \right) & O3-Cu-O4 \\ 170.82 \left(6 \right) & N2-Cu-O4 \\ \end{array}$

Table 2Hydrogen-bond geometry (Å, °).

	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
O10−H3····O4	0.857 (17)	2.02 (2)	2.843 (3)	161 (3)
O10−H3···O6	0.857 (17)	2.49 (2)	3.167 (4)	137 (3)
O10-H3···N6	0.857 (17)	2.57 (2)	3.371 (3)	157 (3)
O10-H4···O9	0.847 (17)	2.03 (2)	2.829 (3)	156 (3)
$O10-H4\cdots O8$	0.847 (17)	2.65 (2)	3.345 (3)	140 (3)
$O10-H4\cdots N7$	0.847 (17)	2.700 (19)	3.517 (3)	163 (3)
$O11-H1\cdots O5^i$	0.848 (17)	1.99 (2)	2.795 (3)	157 (3)
$O11 - H2 \cdot \cdot \cdot O8^{ii}$	0.858 (17)	2.08 (2)	2.908 (3)	164 (3)
$O11-H2 \cdot \cdot \cdot O7^{ii}$	0.858 (17)	2.40 (2)	3.103 (3)	139 (3)
$O11 - H2 \cdot \cdot \cdot N7^{ii}$	0.858 (17)	2.574 (18)	3.417 (3)	168 (3)
$N5-H5A\cdotsO1^{iii}$	0.90	1.79	2.686 (2)	176
$N5 - H5B \cdot \cdot \cdot O10^{i}$	0.90	2.07	2.850 (3)	144

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z; (iii) x - 1, y, z.

All H atoms, except for the water H atoms, were placed in calculated positions and included in the final cycles of refinement in the riding-model approximation, with N-H distances of 0.90 Å, and C-H distances of 0.93 (aromatic H atoms), 0.97 (methylene groups) and 0.96 Å (methyl group), and with $U_{iso}(H)=1.2U_{eq}(C,N)$ [or $1.5U_{eq}(C)$]. The water H atoms were located in Fourier syntheses, but their positional and displacement parameters were refined with O-H distance restraints of 0.85 Å and H···H restraints of 1.39 Å. $U_{iso}(H)$ values for the water H atoms were set equal to $1.5U_{eq}(O)$.

Data collection: *CrystalClear* (Rigaku/MSC, 2004); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

We gratefully acknowledge the financial support of the Natural Science Foundation of China (grant Nos. 20173064 and 90203017).

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Chen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346–349.
- Chen, Z.-F., Xiong, R.-G., Zuo, J.-L., Guo, Z., You, X.-Z. & Fun, H.-K. (2000). J. Chem. Soc. Dalton Trans. pp. 4013–4014.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Froelich-Ammon, S. J. & Osheroff, N. (1995). J. Biol. Chem. 270, 21429-21432.
- Mendoza-Diaz, G., Martinez-Aguilera, L. M. R., Moreno-Esparza, R., Pannell, K. H. & Cervantes-Lee, F. (1993). J. Inorg. Biochem. 50, 65–78.
- Rigaku/MSC (2004). *CrystalClear*. Version 1.3.6. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX77381-5209, USA.
- Shea, M. E. & Hiasa, H. (2000). J. Biol. Chem. 275, 14649-14658.
- Sheldrick, G. M. (1997). SHELXLS97 and SHELXL97. University of Göttingen, Germany.
- Wang, G.-P., Zhu, L.-G. & Yu, Q.-S. (2003). Chin. J. Inorg. Chem. 19, 179-182.
- Zang, Y., Yin, Z.-F., Wang, G.-X., Zeng, C., Dai, A.-B. & Zhou, Z.-Y. (1990). Inorg. Chem. 29, 560–563.